Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Commun Med (Lond) ; 4(1): 66, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582818

RESUMO

BACKGROUND: Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies. METHODS: We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment. RESULTS: Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation. CONCLUSIONS: Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.


Islet autoantibodies are markers found in the blood when insulin-producing cells in the pancreas become damaged and can be used to predict future development of type 1 diabetes. We evaluated published literature to determine whether characteristics of islet antibodies (type, levels, numbers) could improve prediction and help understand differences in how individuals with type 1 diabetes respond to treatments. We found existing evidence shows that islet autoantibody type and number are most useful to predict disease progression before diagnosis. In addition, the age when islet autoantibodies first appear strongly influences rate of progression. These findings provide important information for patients and care providers on how islet autoantibodies can be used to understand future type 1 diabetes development and to identify individuals who have the potential to benefit from intervention or prevention therapy.

2.
Commun Med (Lond) ; 3(1): 130, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794169

RESUMO

BACKGROUND: Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS: To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS: We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS: While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.


Type 1 diabetes (T1D) is a condition that results from the destruction of a type of cell in the pancreas that produces the hormone insulin, leading to lifelong dependence on insulin injections. T1D prevention remains a challenging goal, largely due to the immense variability in disease processes and progression. Therapies tested to date in medical research settings (clinical trials) work only in a subset of individuals, highlighting the need for more tailored prevention approaches. We reviewed clinical trials of therapies targeting the disease process in T1D. While the overall quality of trials was high, studies testing individual features affecting responses to treatments were low. This review reveals an important need to carefully plan high-quality analyses of features that affect treatment response in T1D, to ensure that tailored approaches may one day be applied to clinical practice.

3.
Nat Med ; 29(10): 2438-2457, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794253

RESUMO

Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.


Assuntos
Diabetes Mellitus , Medicina de Precisão , Humanos , Consenso , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Diabetes Mellitus/terapia , Medicina Baseada em Evidências
4.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131690

RESUMO

Background: Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Efforts to prevent T1D have focused on modulating immune responses and supporting beta cell health; however, heterogeneity in disease progression and responses to therapies have made these efforts difficult to translate to clinical practice, highlighting the need for precision medicine approaches to T1D prevention. Methods: To understand the current state of knowledge regarding precision approaches to T1D prevention, we performed a systematic review of randomized-controlled trials from the past 25 years testing disease-modifying therapies in T1D and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. Results: We identified 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss in individuals at disease onset. Seventeen agents tested, mostly immunotherapies, showed benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employed precision analyses to assess features linked to treatment response. Age, measures of beta cell function and immune phenotypes were most frequently tested. However, analyses were typically not prespecified, with inconsistent methods reporting, and tended to report positive findings. Conclusions: While the quality of prevention and intervention trials was overall high, low quality of precision analyses made it difficult to draw meaningful conclusions that inform clinical practice. Thus, prespecified precision analyses should be incorporated into the design of future studies and reported in full to facilitate precision medicine approaches to T1D prevention. Plain Language Summary: Type 1 diabetes (T1D) results from the destruction of insulin-producing cells in the pancreas, necessitating lifelong insulin dependence. T1D prevention remains an elusive goal, largely due to immense variability in disease progression. Agents tested to date in clinical trials work in a subset of individuals, highlighting the need for precision medicine approaches to prevention. We systematically reviewed clinical trials of disease-modifying therapy in T1D. While age, measures of beta cell function, and immune phenotypes were most commonly identified as factors that influenced treatment response, the overall quality of these studies was low. This review reveals an important need to proactively design clinical trials with well-defined analyses to ensure that results can be interpreted and applied to clinical practice.

5.
Diabetes Care ; 45(12): 2982-2990, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326757

RESUMO

OBJECTIVE: We studied longitudinal differences between progressors and nonprogressors to type 1 diabetes with similar and substantial baseline risk. RESEARCH DESIGN AND METHODS: Changes in 2-h oral glucose tolerance test indices were used to examine variability in diabetes progression in the Diabetes Prevention Trial-Type 1 (DPT-1) study (n = 246) and Type 1 Diabetes TrialNet Pathway to Prevention study (TNPTP) (n = 503) among autoantibody (Ab)+ children (aged <18.0 years) with similar baseline metabolic impairment (DPT-1 Risk Score [DPTRS] of 6.5-7.5), as well as in TNPTP Ab- children (n = 94). RESULTS: Longitudinal analyses revealed annualized area under the curve (AUC) of C-peptide increases in nonprogressors versus decreases in progressors (P ≤ 0.026 for DPT-1 and TNPTP). Vector indices for AUC glucose and AUC C-peptide changes (on a two-dimensional grid) also differed significantly (P < 0.001). Despite marked baseline metabolic impairment of nonprogressors, changes in AUC C-peptide, AUC glucose, AUC C-peptide-to-AUC glucose ratio (AUC ratio), and Index60 did not differ from Ab- relatives during follow-up. Divergence between nonprogressors and progressors occurred by 6 months from baseline in both cohorts (AUC glucose, P ≤ 0.007; AUC ratio, P ≤ 0.034; Index60, P < 0.001; vector indices of change, P < 0.001). Differences in 6-month change were positively associated with greater diabetes risk (respectively, P < 0.001, P ≤ 0.019, P < 0.001, and P < 0.001) in DPT-1 and TNPTP, except AUC ratio, which was inversely associated with risk (P < 0.001). CONCLUSIONS: Novel findings show that even with similarly abnormal baseline risk, progressors had appreciably more metabolic impairment than nonprogressors within 6 months and that the measures showing impairment were predictive of type 1 diabetes. Longitudinal metabolic patterns did not differ between nonprogressors and Ab- relatives, suggesting persistent ß-cell responsiveness in nonprogressors.


Assuntos
Diabetes Mellitus Tipo 1 , Criança , Humanos , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Glicemia/metabolismo , Teste de Tolerância a Glucose , Autoanticorpos , Glucose , Progressão da Doença
6.
Diabetologia ; 65(1): 88-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34642772

RESUMO

AIMS/HYPOTHESIS: Methods to identify individuals at highest risk for type 1 diabetes are essential for the successful implementation of disease-modifying interventions. Simple metabolic measures are needed to help stratify autoantibody-positive (Aab+) individuals who are at risk of developing type 1 diabetes. HOMA2-B is a validated mathematical tool commonly used to estimate beta cell function in type 2 diabetes using fasting glucose and insulin. The utility of HOMA2-B in association with type 1 diabetes progression has not been tested. METHODS: Baseline HOMA2-B values from single-Aab+ (n = 2652; mean age, 21.1 ± 14.0 years) and multiple-Aab+ (n = 3794; mean age, 14.5 ± 11.2 years) individuals enrolled in the TrialNet Pathway to Prevention study were compared. Cox proportional hazard models were used to determine associations between HOMA2-B tertiles and time to progression to type 1 diabetes, with adjustments for age, sex, HLA status and BMI z score. Receiver operating characteristic (ROC) analysis was used to test the association of HOMA2-B with type 1 diabetes development in 1, 2, 5 and 10 years. RESULTS: At study entry, HOMA2-B values were higher in single- compared with multiple-Aab+ Pathway to Prevention participants (91.1 ± 44.5 vs 83.9 ± 38.9; p < 0.001). Single- and multiple-Aab+ individuals in the lowest HOMA2-B tertile had a higher risk and faster rate of progression to type 1 diabetes. For progression to type 1 diabetes within 1 year, area under the ROC curve (AUC-ROC) was 0.685, 0.666 and 0.680 for all Aab+, single-Aab+ and multiple-Aab+ individuals, respectively. When correlation between HOMA2-B and type 1 diabetes risk was assessed in combination with additional factors known to influence type 1 diabetes progression (insulin sensitivity, age and HLA status), AUC-ROC was highest for the single-Aab+ group's risk of progression at 2 years (AUC-ROC 0.723 [95% CI 0.652, 0.794]). CONCLUSIONS/INTERPRETATION: These data suggest that HOMA2-B may have utility as a single-time-point measurement to stratify risk of type 1 diabetes development in Aab+ individuals.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adolescente , Adulto , Autoanticorpos , Glicemia/metabolismo , Criança , Pré-Escolar , Humanos , Insulina , Resistência à Insulina/fisiologia , Adulto Jovem
7.
Immunohorizons ; 5(7): 535-542, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261674

RESUMO

In 1986, The New England Journal of Medicine published George Eisenbarth's (Eisenbarth. 1986. N. Engl. J. Med. 314: 1360-1368) model of type 1 diabetes (T1D) as a chronic autoimmune disease. In 2019, the same journal published the results of the teplizumab trial, which showed the anti-CD3 mAb delayed T1D progression in high-risk individuals. Although teplizumab is the first immunomodulatory agent to demonstrate significant delay in disease progression, it is also one of the few tested prior to clinical disease onset. Is it possible, then, that this trial's success is as much about the agent as it is about its timing? This commentary will review the landscape of immune intervention in T1D since 1986, discuss the teplizumab trial results, and finally, speculate on whether current paradigms for T1D immune intervention should focus less on disease development as a continuum and more on the stages of T1D progression as distinct disease processes.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Agentes de Imunomodulação/uso terapêutico , Imunoterapia/métodos , Tempo para o Tratamento , Anticorpos Monoclonais Humanizados/uso terapêutico , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 1/imunologia , Progressão da Doença , Humanos , Resultado do Tratamento
8.
J Immunol ; 206(7): 1443-1453, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658296

RESUMO

Insulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic ß cells occurs. In previous work, when purified IR+ and IR- T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR+ T cells developed insulitis and diabetes. In this study, peripheral blood samples from individuals with T1D (new onset to 14 y of duration), relatives at high-risk for T1D, defined by positivity for islet autoantibodies, and healthy controls were examined for frequency of IR+ T cells. High-risk individuals had significantly higher numbers of IR+ T cells as compared with those with T1D (p < 0.01) and controls (p < 0.001); however, the percentage of IR+ T cells in circulation did not differ significantly between T1D and control subjects. With the hypothesis that IR+ T cells traffic to the pancreas in T1D, we developed a (to our knowledge) novel mouse model exhibiting a FLAG-tagged mouse IR on T cells on the C57BL/6 background, which is not susceptible to developing T1D. Interestingly, these C57BL/6-CD3FLAGmIR/mfm mice showed evidence of increased IR+ T cell trafficking into the islets compared with C57BL/6 controls (p < 0.001). This transgenic animal model provides a (to our knowledge) novel platform for investigating the influence of IR expression on T cell trafficking and the development of insulitis.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Pâncreas/imunologia , Receptor de Insulina/metabolismo , Linfócitos T/imunologia , Adolescente , Adulto , Animais , Movimento Celular , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Risco , Adulto Jovem
9.
Biomedicines ; 9(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418839

RESUMO

Islet autoantibodies are the primary biomarkers used to predict type 1 diabetes (T1D) disease risk. They signal immune tolerance breach by islet autoantigen-specific B lymphocytes. T-B lymphocyte interactions that lead to expansion of pathogenic T cells underlie T1D development. Promising strategies to broadly prevent this T-B crosstalk include T cell elimination (anti-CD3, teplizumab), B cell elimination (anti-CD20, rituximab), and disruption of T cell costimulation/activation (CTLA-4/Fc fusion, abatacept). However, global disruption or depletion of immune cell subsets is associated with significant risk, particularly in children. Therefore, antigen-specific therapy is an area of active investigation for T1D prevention. We provide an overview of strategies to eliminate antigen-specific B lymphocytes as a means to limit pathogenic T cell expansion to prevent beta cell attack in T1D. Such approaches could be used to prevent T1D in at-risk individuals. Patients with established T1D would also benefit from such targeted therapies if endogenous beta cell function can be recovered or islet transplant becomes clinically feasible for T1D treatment.

10.
J Immunol ; 205(12): 3263-3276, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199538

RESUMO

Signaling lymphocytic activation molecule-associated protein (SAP), a critical intracellular signaling molecule for T-B lymphocyte interactions, drives T follicular helper (Tfh) cell development in germinal centers (GCs). High-affinity islet autoantibodies predict type 1 diabetes (T1D) but do not cause ß cell destruction. This paradox intimates Tfh cells as key pathologic effectors, consistent with an observed Tfh signature in T1D. To understand how fully developed Tfh (GC Tfh) contribute to different autoimmune processes, we investigated the role of SAP in T1D and autoantibody-mediated arthritis. Whereas spontaneous arthritis depended on SAP in the autoantibody-mediated K/BxN model, organized insulitis and diabetes onset were unabated, despite a blocked anti-insulin vaccine response in SAP-deficient NOD mice. GC Tfh and GC B cell development were blocked by loss of SAP in K/BxN mice. In contrast, although GC B cell formation was markedly reduced in SAP-deficient NOD mice, T cells with a GC Tfh phenotype were found at disease sites. CXCR3+ CCR6- (Tfh1) subset bias was observed among GC Tfh cells infiltrating the pancreas of NOD mice, which was enhanced by loss of SAP NOD T cells override SAP requirement to undergo activation and proliferation in response to Ag presentation, demonstrating the potential for productive cognate T-B lymphocyte interactions in T1D-prone mice. We find that SAP is essential when autoantibody-driven immune complexes promote inflammation but is not required for effective organ-specific autoimmune attack. Thus, Tfh induced in classic GC reactions are dispensable for T1D, but the autoimmune process in the NOD model retains pathogenic Tfh without SAP.


Assuntos
Linfócitos B/imunologia , Comunicação Celular/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/imunologia , Células Th1/imunologia , Animais , Autoanticorpos/genética , Autoanticorpos/imunologia , Linfócitos B/patologia , Comunicação Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Células Th1/patologia
11.
Clin Epigenetics ; 12(1): 116, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736653

RESUMO

BACKGROUND: Identification of islet ß cell death prior to the onset of type 1 diabetes (T1D) or type 2 diabetes (T2D) might allow for interventions to protect ß cells and reduce diabetes risk. Circulating unmethylated DNA fragments arising from the human INS gene have been proposed as biomarkers of ß cell death, but this gene alone may not be sufficiently specific to report ß cell death. RESULTS: To identify new candidate genes whose CpG sites may show greater specificity for ß cells, we performed unbiased DNA methylation analysis using the Infinium HumanMethylation 450 array on 64 human islet preparations and 27 non-islet human tissues. For verification of array results, bisulfite DNA sequencing of human ß cells and 11 non-ß cell tissues was performed on 5 of the top 10 CpG sites that were found to be differentially methylated. We identified the CHTOP gene as a candidate whose CpGs show a greater frequency of unmethylation in human islets. A digital PCR strategy was used to determine the methylation pattern of CHTOP and INS CpG sites in primary human tissues. Although both INS and CHTOP contained unmethylated CpG sites in non-islet tissues, they occurred in a non-overlapping pattern. Based on Naïve Bayes classifier analysis, the two genes together report 100% specificity for islet damage. Digital PCR was then performed on cell-free DNA from serum from human subjects. Compared to healthy controls (N = 10), differentially methylated CHTOP and INS levels were higher in youth with new onset T1D (N = 43) and, unexpectedly, in healthy autoantibody-negative youth who have first-degree relatives with T1D (N = 23). When tested in lean (N = 32) and obese (N = 118) youth, increased levels of unmethylated INS and CHTOP were observed in obese individuals. CONCLUSION: Our data suggest that concurrent measurement of circulating unmethylated INS and CHTOP has the potential to detect islet death in youth at risk for both T1D and T2D. Our data also support the use of multiple parameters to increase the confidence of detecting islet damage in individuals at risk for developing diabetes.


Assuntos
Morte Celular/genética , Ácidos Nucleicos Livres/sangue , Diabetes Mellitus/sangue , Insulina/sangue , Ilhotas Pancreáticas , Proteínas Nucleares/sangue , Obesidade Pediátrica/sangue , Fatores de Transcrição/sangue , Ácidos Nucleicos Livres/genética , Criança , Diabetes Mellitus/genética , Feminino , Humanos , Insulina/genética , Masculino , Proteínas Nucleares/genética , Obesidade Pediátrica/genética , Fatores de Transcrição/genética
12.
J Immunol ; 201(3): 861-873, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950508

RESUMO

Early breaches in B cell tolerance are central to type 1 diabetes progression in mouse and man. Conventional BCR transgenic mouse models (VH125.Tg NOD) reveal the power of B cell specificity to drive disease as APCs. However, in conventional fixed IgM models, comprehensive assessment of B cell development is limited. To provide more accurate insight into the developmental and functional fates of anti-insulin B cells, we generated a new NOD model (VH125SDNOD) in which anti-insulin VDJH125 is targeted to the IgH chain locus to generate a small (1-2%) population of class switch-competent insulin-binding B cells. Tracking of this rare population in a polyclonal repertoire reveals that anti-insulin B cells are preferentially skewed into marginal zone and late transitional subsets known to have increased sensitivity to proinflammatory signals. Additionally, IL-10 production, characteristic of regulatory B cell subsets, is increased. In contrast to conventional models, class switch-competent anti-insulin B cells proliferate normally in response to mitogenic stimuli but remain functionally silent for insulin autoantibody production. Diabetes development is accelerated, which demonstrates the power of anti-insulin B cells to exacerbate disease without differentiation into Ab-forming or plasma cells. Autoreactive T cell responses in VH125SDNOD mice are not restricted to insulin autoantigens, as evidenced by increased IFN-γ production to a broad array of diabetes-associated epitopes. Together, these results independently validate the pathogenic role of anti-insulin B cells in type 1 diabetes, underscore their diverse developmental fates, and demonstrate the pathologic potential of coupling a critical ß cell specificity to predominantly proinflammatory Ag-presenting B cell subsets.


Assuntos
Apresentação de Antígeno/imunologia , Subpopulações de Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/imunologia , Anticorpos Anti-Insulina/imunologia , Insulina/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Feminino , Tolerância Imunológica/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...